A 1.5 TeV Injector for the LHC

(the early days)

JOHN A JOHNSTONE AD / FERMILAB 3.08.06

- Motivation for a 2nd ring.
- Injector Design Constraints & Concept.
- Magnets:

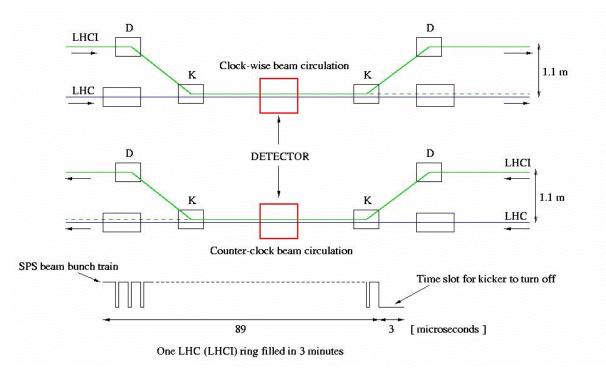
Main Ring Magnets
Special Fast Magnets

• Lattice Design (partial):

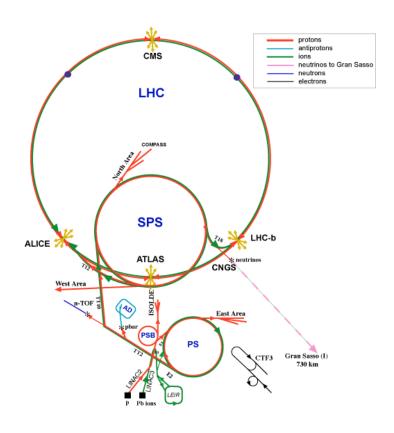
Arcs & Dispersion Suppressers IR1 & 5 High Luminosity Straights Magnet count for IR1 & 5

• Continuing Studies

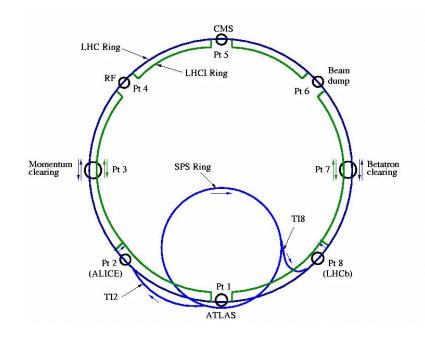
Contributed courtesy of Henryk Piekarz (TD/Fermilab), aided & abetted by Steve Hayes (power supplies), and V. Kashikhin (fast magnets).


J.A.J

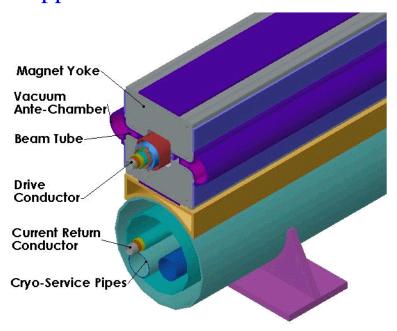
Motivation for the LHCI:


- The LHC magnets are reputed to have unsatisfactory field quality at the 450 GeV SPS injection energy.
- Possible options are: (a) build a new SPS ring to boost the energy to 1 TeV or better, and; (b) build a new injector within the LHC tunnel to accelerate the 450 GeV beams to 1.5 TeV for transfer to the LHC.
- Advantages to option (b) [originally suggested by Lucio Rossi of CERN (9/05) & subsequently pursued by Henryk Piekarz] are:
 - (i) the ring would be installed during scheduled LHC downtime— no HEP interruptions, and;
 - (ii) with little, or no civil construction the price is reasonably cheap ~\$150 million (less than MI, for example).

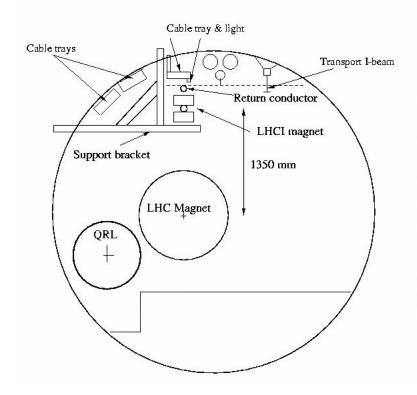
Design Constraints & Concept:


• The LHCI would be installed above the LHC in the LHC tunnel without major modifications ⇒ at a minimum the LHCI & LHC must share common beampipes through the detectors at IR1 & IR5 (Atlas & CMS).

• The magnet strings common to LHCI & LHC must be able to turn on/off in 3 µsec (the separation between the head & tail of the bunch train).

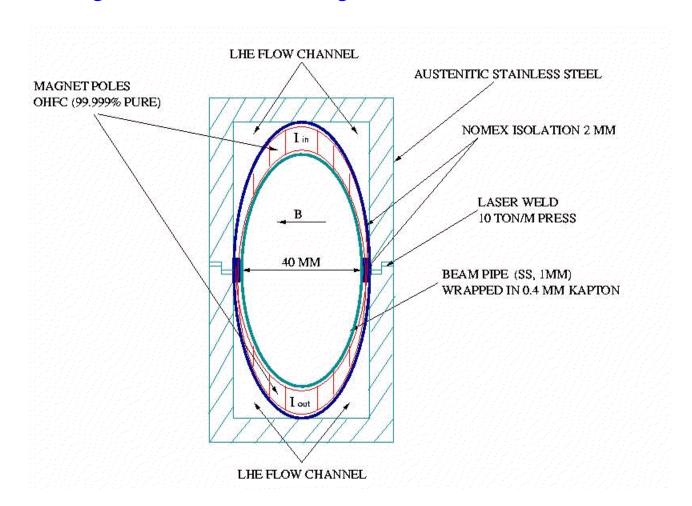


• Injection would continue to occur at IR's 2 & 8, with immediate transfer to the LHCI for acceleration to 1.5 TeV (details need to be worked out).

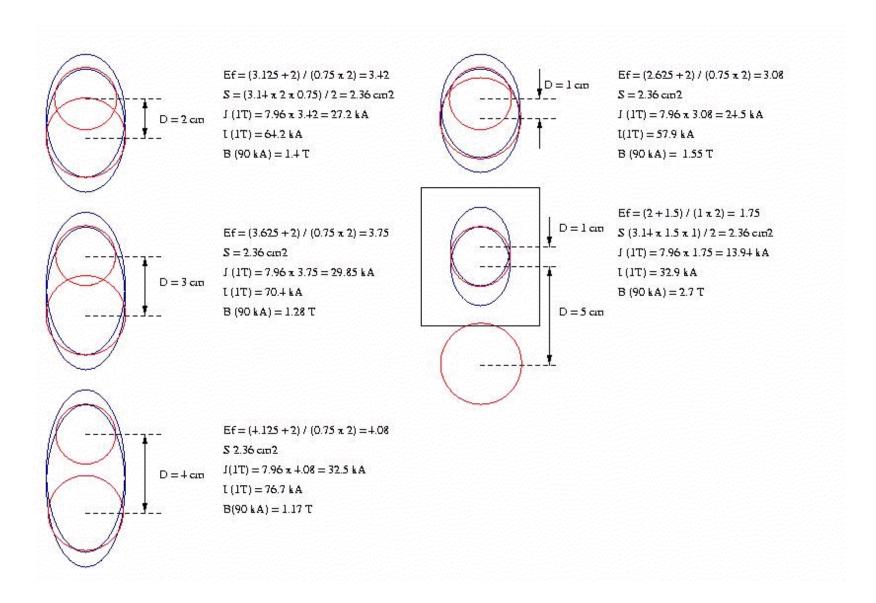


- Momentum & betatron scraping at IR's
 3 & 7 can not be used by the LHCI.
- It is *hoped* that the RF at IR4 can be used (but seems unlikely at this time).
- It is *hoped* that the dump at IR6 can be used (still needs to be looked at).
- Alice & LHCb are unknowns.

Low Field VLHC gradient magnets proposed for arcs & dispersion suppressers.



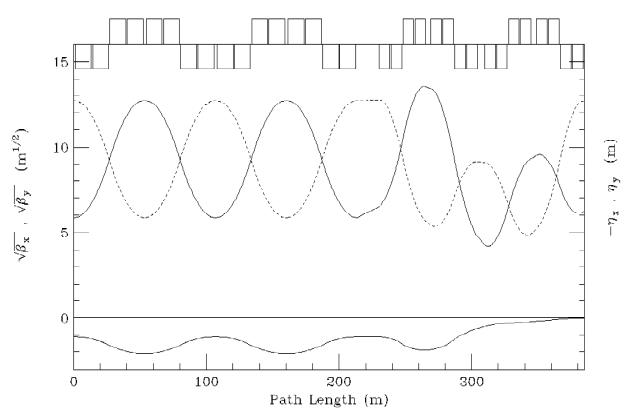
- Small (26 x 24 cm) physical cross-section.
- 1.6 T field at 55 kA.
- 20 mm magnet pole gap.



- The LHCI ring fits easily above the LHC magnets.
- Vertical separation between the LHCI-LHC beams will be 1350 mm.

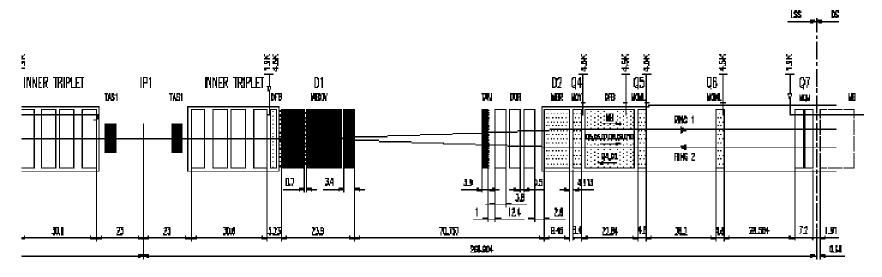
Conceptual Design of Fast Transfer Magnets:

Fields of 4,5 & 6 cm gap Fast Magnets:


LHCI Lattice Design

Arc & Generic Dispersion Suppresser Cells:

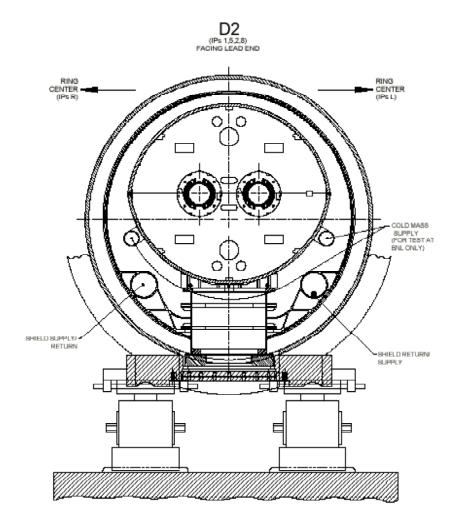
- Constructed from combined function 'transmission line' magnets to replicate LHC optics & match the LHC footprint.
- Dispersion suppressers are similar (sort of) to the Main Injector 2/3 the bend & 3/4 the length of arc cells.


Cell Type	Cell Length (m)	Magnet Types	Lmag (m)	# / Cell	B (T)	B' (T/m)
Arc	107	GF / GD	12	8	1.595	4.858
Suppressor	80	GSF / GSD	8	8	1.595	10.112

LHCI - ARC & DS CELLS

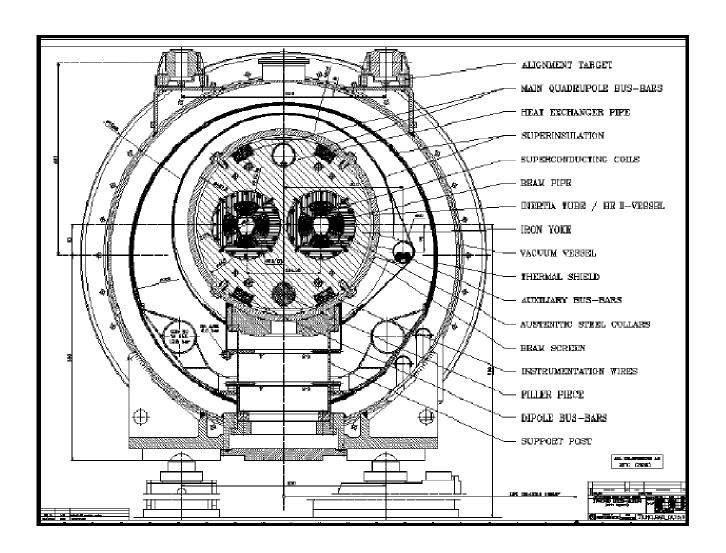
- β (max) = 162 m
- η (max) = 2.10 m
- Phase advance / $cell = 90^{\circ}$

IR1 & IR5 High Luminosity Inserts:



• The 1.35 m altitude change of the LHCI must be accomplished in *very* short distances:

$$Q5 - Q6 \sim 28 \text{ m}$$


$$Q6 - Q7 \sim 28 \text{ m}$$

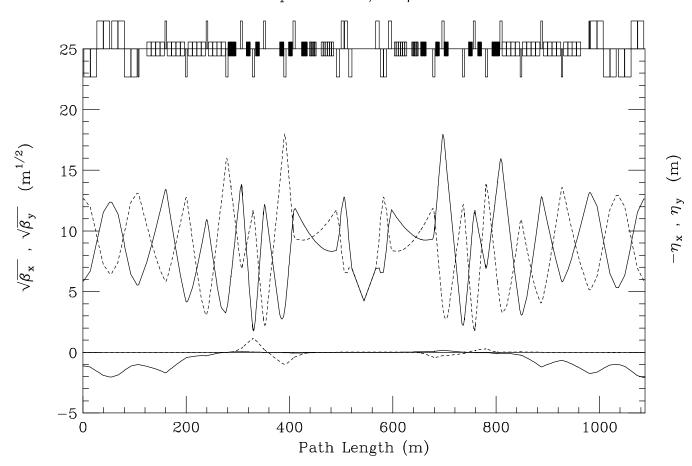
• Vertical separation of the LHCI from the LHC must start as close to D1 as possible to clear the D2 separation dipoles 71 m downstream. The beams are sufficiently separated to insert fast transfer magnets ~15 m from the face of D1.

D2 Separation Dipole

- LHC magnets are massive -- the beams must rise a minimum of ~480 mm before the LHCI beampipe will clear the D2 (& downstream quadrupoles) cryostat.
- To install quadrupoles in the transfer line above the LHC magnets this elevation change must be significantly more.

Vertical Bends:

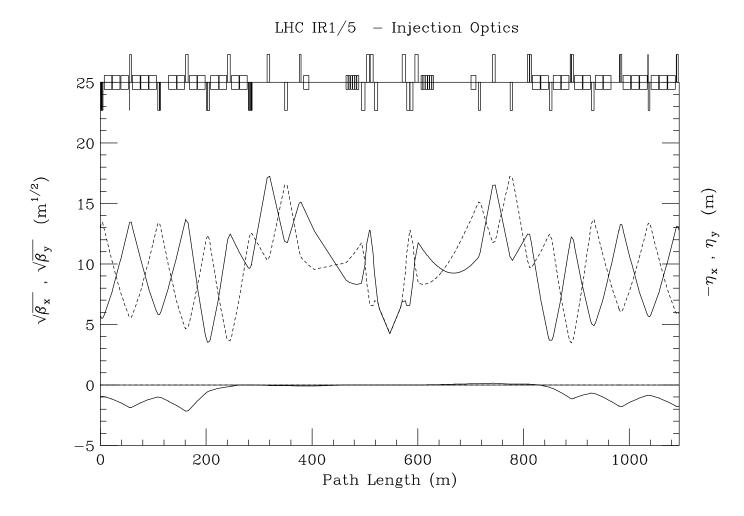
- The elevation change to 1.35 m is accomplished in 2 steps first to 0.675 m above the LHC beam center to clear D2 & the LHC quads, and then another rise to flatten out at 1.35 m by the end of the straight section.
- At the time of the modeling presented here today (obsolete as of yesterday) the vertical bending magnets operated near 100 kA with the following properties:


• The initial bending is performed with the fast magnets — 3 with 4 cm gaps, 2 with 5cm, and 1 with 6 cm. Once the beams are well separated vertically the first up bend is completed using 10 of the 1 m long 6.0 T magnets. The remaining 3 bend centers each side of the IP use 14 magnets each, also of the 6.0 T variety.

LHCI Quadrupoles @ IR1 & IR5:

- Quadrupoles in the straight section are powered anti-symmetrically in pairs.
- The dispersion suppressers at these straight comprise separate dipoles & quadrupoles. The quadrupoles are powered individually and are only approximately antisymmetric.
- Optics of the LHCI are matched to those of the LHC at the face of the separation magnets D1, and therefore to the LHC injection β^* 's of 18.0 m, with horizontal η^* & $\eta'^* = 0$.
- The vertical bends are performed achromatically so vertical dispersion & it's slope are also zero at the IP.

Optics @ IR1 & IR5:


LHC-I Optics @ IR1/5 : $\beta^* = 18.00$ m

- $\beta^* = 18.0$ m, with both the horizontal and vertical η^* & $\eta'^* = 0$.
- β (max) = 320 m comparable to the 300 m in the LHC injection optics.

Quadrupole Parameters @ IR1 & IR5:

Quad	L (mag) (m)	B' (left) (T/m)	B' (right) (T/m)	
Q4	4.0	-62.92	62.92	
Q5	4.0	68.98	-68.98	
Q6	4.0	-97.83	97.83	
Q7	4.0	80.88	-80.88	
Q8	4.0	-91.25	91.25	
Q9	4.0	56.46	-56.46	
Q10	3.0	-81.27	80.62	
Q11	3.0	68.45	-68.24	
Q12	3.0	-58.38	56.39	
Q13	1.5	48.02	-39.53	

LHC injection optics at IR1 & IR5 for comparison

<u>Updated Fast Magnet Parameters (from H.P. yesterday):</u>

LHCI-LHC Transfer Line Magnet Count

			Number of				Total vertic	al	Magnet
	В	Magnet length	magnets	Drift space	Total Magnet length	Vertical shift	shift	Beam pati	n type
	[T]	[m]		[m]	[m]	[cm]	[cm]	[m]	
First Bend									
	1.55	0.8	2	0.2	1.8	1	1	1.8	Fast/Normal
	1.40	0.8	2	0.2	1.8	1	2	3.6	н
	1.28	0.7	3 3	0.3	3.0	1	3	6.6	н
	1.17	0.7	3	0.3	3.0	1	4	9.6	н
				2.4		1	4 5	12.0	
	LHC-L	HCI beam pipe	separation						
	2.7	0.9	8	0.8	8.8	7	12	20.8	Slow/Normal
				2.0		2	14	22.7	
	6.0	0.8	10	1.0	9.0	19	33	31.7	\$low/\$C
				0.8		1	34	32.5	
Second Bend	d								
	6.0	0.8	18	1.8	16.2	34	68	48.7	Slow/SC
	LHCI I	oeam passes ove	r the face of	D2					
Third Bend									
	6.0	0.8	18	1.8	16.2	34	102	64.9	\$low/\$C
				1.0		34		65.9	
Fourth Bend									
	6.0	0.8	18	1.8	16.2	34	136	82.1	\$low/\$C
				1.0				83.1	
	LHCI	eam passes over	r the face of	Q5					

All magnets are 2 bore types Total number of magnet assemblies: 6

Continuing (near term) Studies:

- Revise lattice model to accomodate new fast magnet parameters.
- Investigate earlier separation of the beams by horizontal bends at the face of D1.
- Begin looking at IR2 & IR8 for transferring beams to the LHCI.
- Begin looking at the chances of using the LHC RF & beam dump.
- Continue with detailed fast magnet designs & powering options.
- Start design of LHCI quadrupoles.......

.....and so on, ad infinitum.

O